Nano Rome, 20-23 September 2016 Incvation

Virtual Screening of Nutraceutical Products

SCH

NGER.

UNIVERSITÁ degli STUDI "MAGNA GRÆCIA" di CATANZARO

SUMMARY

INTRODUCTION

- Drug discovery process
- Nutraceuticals
- Chemo Cataloging Process
- Virtual Screening
- > PURPOSE OF THE WORK
- MATERIALS AND METHODS
- RESULTS AND DISCUSSION
- > CONCLUSION
- > ACKNOWLEDGMENTS

Drug discovery process

Drug development is the process of bringing a new pharmaceutical drug to the market once a lead compound has been identified through the process of drug discovery.

¹Newmann DJ, Cragg GM. J Nat Prod 2012; 75:311-

Bioinformatics and Chemoinformatics

- A strategy for the discovery of new bioactive compounds is the cooperation between chemoinformatics and bioinformatics.
- Scientific disciplines that have evolved in recent decades at the interface between chemistry, biology and computer
 ²Rollinger M, Stuppner H, Langer T. *Prog Drug Res.* 2008, 65, 213-49. Giosuè Costa

Nutraceuticals

Nutraceutical, a fusion of the words "**nutrition**" and "**pharmaceutical**", was coined in 1989 by Stephen L. DeFelice, founder and chairman of the Foundation of Innovation Medicine. The term is applied to products that range from isolated **nutrients**, **dietary supplements** and **herbal products**, specific diets and processed foods such as cereals, soups, and beverages.

Nutraceuticals are products derived from food sources that are supposed to **provide extra health benefits**, in addition to the basic nutritional value found in foods. Depending on the jurisdiction, products may claim to **prevent chronic diseases**, **improve health**, delay the aging process, **increase life expectancy**, or support the structure or function of the body

Nutraceuticals

Nutraceuticals

In University "Magna Græcia" of Catanzaro in recent years there is increasing discussion of nutraceuticals. There are several publicized events, to which also the group of Medicinal Chemistry

Giosuè Costa

5

Chemo cataloging process

Systematic name	L-tyrosine	
IUPAC name	(2S)-2-amino-3-(4-hydroxyphenyl)propanoid	cacid
Empirical formula	C9H11NO3	
WNL	QVYZ1R DQ	
Canonical SMILE	C1=CC(=CC=C1CC(C(=O)O)N)O	H ₂ N OH
Isomeric SMILE	C1=CC(=CC=C1C[C@@H](C(=O)O)N)O	
SLN	OHC(=O)CH(NH2)CH2C[1]=CHCH=C(OH)	CH=CH@1
ROSDAL	10-2=30,2-4-5N,4-6-7=-12-7,10-130	
InChI	InChI=1S/C9H11NO3/c10-8(9(12)13)5-6-1-	3-7(11)4-2-
	6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1	
InChI Key	OUYCCCASQSFEME-QMMMGPOBSA-N	
CAS RN 1D chemic	atostreadure of L-tyrosine with different line	notations
The enormous incre	ease in the number of compou	inds and
related data led in the the only way to five the provintermetics	e past decades to inefficient data- < this, was by electronic mea	handling; ns usingsuè Costa 6

Chemo cataloging process

2D acetaldehyde chemical structure with a part of the SDfile

Virtual Screening. LBVS & SBVS

Identify molecules of novel chemical structure that bind to the macromolecular target of interest Given a set of structurally Structure-base

Virtual Screening (VS)

Given a set of structurally diverse ligands that binds to a receptor, a model of the receptor can be built by using the collective information contained in such set of ligands. These are *known as pharmacophore models.* Structure-based virtual screening involves **docking** of candidate ligands into a protein target followed by applying a scoring function to estimate the possibility that the ligand will bind to the protein with high affinity.

Ligand-based Virtual Screening – LBVS Based on the similarity of known ligands Structure-based Virtual Screening – SBVS

Based on binding of ligands to active sites of the target protein

⁵Alcaro S et al. *J Med Chem* **2013**; *56*: 843–855

Giosuè Costa

8

PURPOSE OF THE WORK

- 1. Chemo-cataloging process starting from Natural products
- Identification of novel hits from natural sources against several macromolecular targets (MultiTagLig) selected on the basis of their roles in relevant pathologies by means of computational meth

MATERIALS AND METHODS

NATURAL LIGANDS LIBRARY: EXAMPLES

With a unique profile of flavonoid and flavonoid glyc

anti-proliferative, anti-aging and immune modulating eftct.

chemo cataloging process of 92 compounds

Giosuè Costa

NATURAL LIGANDS LIBRARY: EXAMPLES

Allium cepa L. var. Tropea (Red Onion)

Protected Geographical Indication (PGI)

Chemo cataloging process of 30 compounds

TROPEA RED ONION COMPONENTS		
FLAVONOIDS	AMINO ACIDS	
isorhamnetin	alanine	
kaempherol	arginine	
quercetin	aspartic acid	
taxifolin	cystine	
GLYCOSIDES FLAVONOIDS	glutamic acid	
7-O-β-glucopyranoside	glycine	
isorhamnetin 3,4'-diglucoside	histidine	
isorhamnetin 4'-glucoside	leucine	
isorhamnetin 7-glucoside	lysine	
quercetin 3-O-glucoside	phenylalanine	
quercetin 7-4'-diglucoside	proline	
quercetin 3,4,'-diglucoside	serine	
quercetin 3,7,4'-triglucoside	threonine	
quercetin 4'-O-glucoside	tyrosine	
taxifolin 4'-O-glucoside	valine	
taxifolin 7-glucoside		

NATURAL LIGANDS LIBRARY: EXAMPLES

TARGETS DATABASE

#	TARGET	PDB code	#	TARGET	PDB code
1	AKT	4GV1	25	GLP1R	3C5T
2	ALK	3AOX	26	GSK3β	4ACC
3	ALK**	2YFX	27	HcK	2HCK
4	Alpha-Glucosidase	3TOP	28	HcK (Stem Cells)	3VRY
5	Aurora A Kinase	2X81	29	HDAC2	4LXZ
6	Aurora B Kinase	2VRX	30	HDAC4	2VQM
7	BMX	3SXR	31	HDAC7	3C10
8	BRAF	1UWH	32	HDAC8	1T67
9	BRAF**	30G7	33	IGF-R1	3181
10	CAI	1AZM	34	MAO-A	2Z5X
11	CAII	4CQ0	35	MAO-B	2V5Z
12	CA VA*	1DMY	36	MEK1	4ARK
13	CA IX	3IAI	37	Pantothenate syntetase*,**	3LE8
14	CA XII	4HT2	38	P-glycoprotein*	3G61
15	CDK2	4KD1	39	PI3K	3DBS
16	c-MET	2WGJ	40	PL	1LPB
17	DPP-IV	4LKO	41	Proteosoma 20S*	3MG0
18	EGFR-K**	4122	42	Regulator Transcriptional*,**	3V78
19	ERβ	1X7J	43	RET	2IVU
20	ERK1	2ZOQ	44	ROCK1	3TWJ
21	ERK5	4B99	45	SIRT1	4151
22	FES	4E93	46	SIRT3	4JSR
23	FGF-R2	2FGI	47	VEGFR2	3CJF
24	FYN	2DQ7	48	ZAP70	1U59

- PROTEIN PREPARATION WIZARD function in MAESTRO 9.7;
 Hydrogen atom were added: All water molecules were
- Hydrogen atom were added; All water molecules were deleted;

- Protein Data Bank site (PDB);
- 48 Crystallographic X-ray structures;
- Human Target;
- Resolution < 2.5 Å;
- Known co-crystallized Inhibitor,

Giosuè Costa

14

SBVS: MOLECULAR DOCKING

Docking is used to perform an exhaustive search of the positional, orientational and conformational space available to the ligand.

Energy 6

A goal of docking is to find the lowest energy ligandtarget complex

MOLECULAR DOCKING: Glide Score

 $\Delta G_{\rm bind} = C_{\rm lipo-lipo} \sum f(r_{\rm lr}) +$ $C_{\text{hbond-neut-neut}} \sum g(\Delta r) h(\Delta \alpha) +$ $C_{\text{hbond-neut-charged}} \sum g(\Delta r) h(\Delta \alpha) +$ $C_{\text{hbond-charged-charged}} \sum g(\Delta r) h(\Delta \alpha) +$ $C_{\text{max-metal-ion}} \sum f(r_{\text{lm}}) + C_{\text{rotb}} H_{\text{rotb}} +$ $C_{\text{polar-phob}}V_{\text{polar-phob}} + C_{\text{coul}}E_{\text{coul}} +$ $C_{\rm vdW}E_{\rm vdW}$ + solvation terms

A score is assigned to the complex formed, taking into account all the binding contributions that are established in the complex.

⁷Friesner RA et al. *J Med Chem* **2004**;

The accuracy of Glide has been shown to:

- successfully reproduce experimentally observed binding modes of co-crystallized inhibitors, in terms of root-mean squared deviation (RMSD).
- 2. discriminate between active and inactive compounds

European Journal of Medicinal Chemistry 82 (2014) 164-171

UM

New insights into the biological properties of *Crocus sativus* L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies

Celeste De Monte ^a, Simone Carradori ^{a, *}, Paola Chimenti ^a, Daniela Secci ^a, Luisa Mannina ^{a, d}, Francesca Alcaro ^b, Anél Petzer ^c, Clarina I. N'Da ^c, Maria Concetta Gidaro ^b, Giosuè Costa ^b, Stefano Alcaro ^b, Jacobus P. Petzer ^{c, *}

New insights into the biological properties of *Crocus sativus* L.: chemical modifications, human monoamine oxidases inhibition and molecular modeling studies

Celeste De Monte ^a, Simone Carradori ^{a, *}, Paola Chimenti ^a, Daniela Secci ^a, Luisa Mannina ^{a, d}, Francesca Alcaro ^b, Anél Petzer ^c, Clarina I. N'Da ^c, Maria Concetta Gidaro ^b, Giosuè Costa ^b, Stefano Alcaro ^b, Jacobus P. Petzer ^{c, *}

The results suggest that crocin may inhibit both hMAO isoform with noncompetitive mechanisms by binding to allosteric sites on the surfaces of the proteins.

IC ₅₀ MAO-A (μM)	IC ₅₀ МАО-В (µМ)
70.300 ± 22.426	28.300 ± 10.872

J. Agric. Food Chem. 2016, 64, 1394-1400

AGRICULTURAL AND FOOD CHEMISTRY

Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies

Giosuè Costa

Maria Concetta Gidaro,[†] Christian Astorino,[‡] Anél Petzer,[§] Simone Carradori,[⊥] Francesca Alcaro,[†] Giosuè Costa,[†] Anna Artese,[†] Giancarlo Rafele,[#] Francesco M. Russo,[‡] Jacobus P. Petzer,[§] and Stefano Alcaro^{*,†}

The complexes were submitted to 100 ns of MDs to investigate the contributions of the amino acids of the catalytic site in their molecular recognition Kaempierol binding mode to the hMAO-A active site is stabilized by the hydrophobic interactions with these key residues for a longer time

J Enzyme Inhib Med Chem, Early Online: 1-7

Journal of Enzyme Inhibition and Medicinal Chemistry

Bioactive compounds of *Crocus sativus* L. and their semi-synthetic derivatives as promising anti-*Helicobacter pylori*, anti-malarial and anti-leishmanial agents

Celeste De Monte¹, Bruna Bizzarri¹, Maria Concetta Gidaro², Simone Carradori³, Adriano Mollica³, Grazia Luisi³, Arianna Granese¹, Stefano Alcaro², Giosuè Costa², Nicoletta Basilico⁴, Silvia Parapini⁵, Maria Maddalena Scaltrito⁴, Carla Masia⁴, and Francesca Sisto⁴

Docking experiments were performed using the X-ray crystallographic structures of six new strategic targets for the treatment of H. pylori infection, in order to **understand** their putative **mechanism of action**.

H. pylori target	PDB code	Resolution
DHQ2	2XD9	1.95 Å
FabZ	3CF8	2.40 Å
FBP aldolase	3C56	2.30 Å
Glutamate racemase	2W4I	1.87 Å
HpPDF	2EW5	2.20 Å
urease	1E9Y	3.00 Å

Compounds	Range	MIC ₅₀	MIC ₉₀
1	32-0.03	32	>32
2	32-0.03	>32	>32
3	32-0.03	32	>32
4	32-0.03	4	8
5	32-0.03	4	8
6	32-0.03	>32	>32
7	32-0.03	16	32
8	32-0.03	16	32
9	32-0.03	2	4
Metronidazole	32-0.03	0.5	>32
Claritromycin	32-0.06	< 0.06	>32

Safranal derivative into the binging pocket of H. pylori β -hydroxyacyl-ACP (**FabZ**), an enzyme involved in the bacterial type II fatty acid synthetic

Giosuè Costa

21

Eriocitrin and Apigenin as New Carbonic Anhydrase VA Inhibitors from a Virtual Screening of Calabrian Natural Products

Planta Med 2015; 81: 533-540

Maria Concetta Gidaro¹, Francesca Alcaro¹, Simone Carradori², Giosuè Costa¹, Daniela Vullo³, Claudiu T, Supuran³,

Allium cepa L. var. Tropea

The database was not only implemented with the glycoside compounds, but the aglycone structure for each of them was considered as well. In this way, the possible metabolites of the natural ligands after a hydrolytic reaction were also taken into account.

A SBVS were performed against five CA isoform: ubiquitous hCA I-II; anti-obesity CA VA and cancer-related CA IX-XII.

Eriocitrin and Apigenin as New Carbonic Anhydrase VA Inhibitors from a Virtual Screening of Calabrian Natural Products

Authors

Maria Concetta Gidaro¹, Francesca Alcaro¹, Simone Carradori², Giosuè Costa¹, Daniela Vullo³, Claudiu T. Supuran³,

AZM positive control and co-crystallized inhibitor K₁ = 0.38 μM

Giosuè Costa

VS techniques seems to confirm its important role with the aim to speed up the identification of bioactive compounds useful for both nutraceutical and drug discovery purposes.

Potential hit candidates for the obesity treatment and

The Essential Oils as Resources of Anti-Obesity Potential Drugs investigated by *in silico* techniques

JMC

Active Components of Essential Oils as Anti-Obesity Potential Drugs Investigated by in Silico Techniques

Giosuè Costa[†], Maria Concetta Gidaro^{*†}, Daniela Vullo[‡], Claudiu T. Supuran[‡], and Stefano Alcaro[†] [†] Dipartimento di Scienze della Salute, Università "Magna Græcia" di Catanzaro, Campus Universitario "S. Venuta", Viale Europa, Loc. Germaneto, 88100 Catanzaro, Italy

[‡] Laboratorio di Chimica Bioinorganica, Polo Scientifico, Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy

The potential hit compounds were submitted to in vitro assays and experimental results, corroborated by molecular modeling studies, showed EOs components as a new class of CAIs with a competitive mechanism of action due to the zinc ion coordination within the active sites of these metallo-enzymes.

Best SIROE Award 2015

The work, published in a specialist journal of the American Chemical Society, was awarded the prize for the best oral presentation at Siroe national congress of 2015 in Rome.

- Computational methods represent essential tools for the modern drug-discovery process;
- Potentially actives compounds are identified, and some of these are also experimentally tested, in term of enzyme inhibition;
- Biological activities against some target were confirmed trough studying molecular recognition.

CONCLUSION. Computational Polypharmacology

Drug molecules typically bind to several targets, and their efficacy and safety is mostly dependent on their polypharmacological profile

Side effects caused by drug binding to unwanted off-targets (adverse polypharmacology) should be early identified

Potential synergistic effects arising from binding **multiple targets** (beneficial polypharmacology) should be taken into consideration

Polypharmacological approaches have the potential to redirect stalled drug discovery projects and to reposition valuable hits or leads (**drug repositioning**)

³Anighoro A. *Chem. Inf. Model.* **2015**, *55*, 676-686. ⁴Rastelli G. *Frontiers in pharmacology*, **2015**, *6*, 1-4.

Interregional Research Center for Food Safety & Health

Prof. S. ALCARO Prof. F. Ortuso Dott..ssa A. Artese Dott.ssa F. Moraca Dott.ssa R. Rocca Dott.ssa I. Romeo Dott. C. Talarico

Dott. S. CARRADORI Prof.ssa P. Chimenti Prof.ssa D. Secci Dott.ssa C. De Monte

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

Prof. J.P. PÈTZER Dott.ssa A. Pètzer

Prof. C.T. SUPURAN Dott.ssa D. Vullo

Thank you!

